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[ Let X be a topological space.
[ Denote by H* (X) the singular cohomology H* (X;[F»).
[ A priori, H* (X) is a Fo-graded vector space.

1 As singular cohomology is a contravariant functor,
the diagonal map A: X — X xX induces a product on
H* (X) making it a graded commutative [F»-algebra.
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NOTATION

[ For every topological space X, the singular cohomol-
ogy H* (X) is a module over the Steenrod algebra.

1 Such a module satisfies the following two conditions
foElere e

Cartan-sformila - — Sgox— 1

Instability condition: Sg*x= 0 for k> n
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satisfying the Instability condition is called an un-
stable module.

[ Denote by % the category of unstable modules.
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Hom 4 (L, ZK) = Homy, (L/iz, ZK) — Homy, (QL, ZK)

Homgy, (M, ZN) = Homg, (QM, N)
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SULLIVAN’S CONJECTURE

Map, (BG ,X) = {point}
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UNSTABLE ADAMS SPECTRAL SEQUENCE
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HA(S === SYm* (Znﬂ:z)/<x2 = Sq"”x)



UNSTABLE ADAMS SPECTRAL SEQUENCE

B eb (0 S X (Map [ X015
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1 Consider CP*° =K (Z,2).
[ The exact sequence of groups

L
O—>Z—>Z[—
2

—Z(2%°)—0

induces the fiber sequence:

BZ[3]-BZ(2°°) —CP*

|

K(Z[3],2)-K(Z(2%),2)



1 We have
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=
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7 It follows that H* (BZ [3]) is trivial.
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[ Therefore, the obvious monomorphism Z (2°°) c gl
induces an isomorphism in cohomology

EEE(ERP = B2
[ In other words, there is an equivalence
mz — ﬁ’?oz-
[ As a consequence, we obtain natural equivalences:
map. (CP,X,) — map. (BZ(2%),X,).



[ The inclusion S® = S! induces the following map

BS? — BS!



[ The inclusion S® = S! induces the following map

RP>® ~BS? — BS! ~ Cp*®



[ The inclusion S® = S! induces the following map

RP>® ~BS? — BS! ~ Cp™®

[ This map induces a short exact sequence of unstable
modaules:

0= CP—=H-RP = H-CP>—10
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SINGULAR COHOMOLOGY

BBs — B m -

fEss = < = f



RESOLUTION

0— H*(BS') — Falu] — ZFs [u] — Z°F) [u] — ---



RESOLUTION

0— ZH* (BS') = ZiFa [u] — 2 ' Fa [u] — - -



RESOLUTION
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RESOLUTION

0— X'H* (BSY)—ZF> [u] — Z**1Fo [1] — - -

| |

0 0 SIS0 sl 00




RESOLUTION

0—X'H* (BS!) —Z'F [u] — Z"*'Fp [u] —- -

| |

0 0 Zt[F2—0>Zt+1[F2L>-“

Homyy (Z”[Fz, Zk[Fz) = Homy, (Z”[Fg, =kF, [u])



ALGEBRAIC CONNECTION

ExtS, (27F,, Z'H* (Bs!) =z @ [ (z”[Fz,sz* (Sb))

a+b=s
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REMARK

Zt+1|]:2 [MZ]

=

>UFy [u] S, (1]

>IA

Zt[Fg [u] ® Fo [u]
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REMARK FOR =1

St+lvzt+l|RPoo of StVZtRPOO

STy SIGL ARP®

o t . .
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St+lvzt+l|RPoo o! StVZtRPOO
grtly 3Igl p gpoo {AVIGAID) grtl,, 5 ippoo o RPoO
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THEOREM

For all integers ¢ =1, the following resolution can be
topologically realized:

O HABS = B 2 Blul—



THEOREM (FRIEDLANDER-MISLIN 1986)

Let £ be a Lie group with finite number of connected
components, then we have a weak homotopy equiva-
lence:

Map, (BZ,X) = {point}
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EXTENDING TO LIE GROUPS WITH FINITE NUMBER OF CONNECTED COMPONENTS

Map, BS>, X :{point}




SINGULAR COHOMOLOGY

H* (BS®) = F, ']



BROWN-GITLER MODULES

Homgy, (M,] (n)) = Homg, (M", F»)
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MILLER ALGEBRA

Homgy, J (m) ®J (1),] (m + n)) = Homg, (F, F2)
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MILLER ALGEBRA

Homgy, J (m) ®J (1),] (m + n)) = Homg, (F, F2)
Jm) e (1) 22 T (m + n)

1
J (Zk) =[F; = Fo (xg)
BT () =Falxo, x1, %2, ..., Xp, ..

n=0



BROWN-GITLER MODULES

° = ]
' = J@
I = Im(I'eJ22) —]4)
I i

=R e e



TOPOLOGICAL REALIZATION
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RESOLUTION

0— H*(BS®) = Falu] »1'®Fs[u] = 1°®@F, [u] — -
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DIFFERENTIALS

1"®F,[u] "1 oF, [u]

id®A
idepreid

["®F, [u] ®Fy [u] ["®](2)®F;[u]



DIFFERENTIALS

1"®F,[u] "1 oF, [u]
1de®A mult®id

idepreid I”@I(Z)@[Fg[u]

I"®F, [u] ®Fy[u]
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RESOLUTION
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RESOLUTION

0—Z'H* (BS¥=—Z'H [ul-—~ 2T e Fs[ul—

| | |

0 0 S e e om0

Homgy, (2"F,, Z'1™) = Homg, (2"F2, 2 1" @ F, [u])



ALGEBRAIC CONNECTION

ExtS, (Z"F,, 'H* (BS)) = €D Ext?, (z”[Fz,sz* (Xb))

a+b=s



Topological realization of 1"
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REMARK

[ There are short exact sequences:
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REMARK

[ There are short exact sequences:
ety
[ There are cofiber sequences:

ZXn—l = Sl’l _)Xn



THEOREM

Themap > X =X2, X" factors through S”. The

homotopy cofiber of the corresponding map X"~ — S”
is the space X".



THANK YOU





