A THEOREM OF PITMAN TYPE FOR THE SIMPLE RANDOM WALK ON \mathbb{Z}^d

Ha noi, December 2024

by MARC PEIGNÉ^{(1)}

Contents

1 Introduction

Pitman's theorem for a one-dimensional Brownian motion $B(t)$ states that $B(t) - 2m(t)$ is a Bessel process, were $B(0) = 0$ and $\mathbf{m}(t)$ denotes the minimum of $B(s), 0 \leq s \leq t$. Since the Brownian motion can be obtained, after a scaling limit, from a coin-tossing random walk $(S_n)_{n>0}$ on \mathbb{Z} , it is natural to prove a similar statement for this random walk and its extension to higher dimensional random walks.

Following [4], we prove with elementary arguments that $(S_n - 2m_n)_{n \geq 0}$, with $S_0 = 0$ and $\mathbf{m}_n = \min(S_k \mid 0 \le k \le n)$, is a Markov chain on N whose transition function $p(x, y)$ can be computed. This transition probability is expressed as the Doob transform of the transitions of the simple random walk, obtained using a positive harmonic function of this random walk confined to N. The Pitman transform therefore proposes a trajectory interpretation of this Doob transform and can be extended in higher dimensions.

In [4], H. Miyazaki & H. Tanaka extend this result in higher dimension. They claim that the approach presented here in dimension $d = 1$ may also be applied to the case $d \geq 2$ without giving any detail and writing "the argument will be quite messy" [4, Introduction]. They employ another method based on the simple observation that the coordinate processes of a simple random walk on $\mathbb{Z}^d, d \geq 2$, with *continuous* time are independent although this is not true for the case of discrete time. This extension is not presented here.

¹Institut Denis Poisson (IDP), Parc de Grandmont, Université de Tours, 37200 France. email : peigne@univ-tours.fr

1.1 Notations

Let $(\varepsilon)_{i\geq 1}$ be a sequence of i.i.d. random variables with values in $\{-1, +1\}$ and Bernoulli distribution $\mu_p = p\delta_1 + q\delta_{-1}$ with $0 < p, q < 1$ and $p + q = 1$.

We set $S_0 = 0$, $S_n = \varepsilon_1 + \ldots + \varepsilon_n$ and $\mathbf{m}_n = \min(S_0, \ldots, S_n)$ for any $n \geq 1$.

The process $(S_n)_{n>0}$ is an irreducible Markov chain on Z with transition matrix $P =$ $(p(x, y))_{x,y\in\mathbb{Z}}$ given by

$$
p(x,y) = \begin{cases} p & \text{if } y = x + 1 \\ q & \text{if } y = x - 1 \\ 0 & \text{otherwise.} \end{cases}
$$

The Markov chain $(S_n)_{n\geq 0}$ is defined on the canonical probability space $(\mathbb{Z}^{\mathbb{N}}, \mathcal{P}(\mathbb{Z})^{\otimes \mathbb{N}}, (\mathbb{P}_x)_{x\in \mathbb{Z}})$ where the measure \mathbb{P}_x is the unique probability measure on $\mathcal{P}(Z)^{\otimes N}$ satisfying the property: for any $n \geq 1$ and $(x_1, \ldots, x_n) \in \mathbb{Z}^n$

$$
\mathbb{P}_x(S_1 = x_1, \dots, S_n = x_n) = \underbrace{p(x, x_1) \dots p(x_{n-1}, x_n)}_{=:p(x, x_1, \dots, x_n)}.
$$

notice that $\mathbb{P}_{x_0}(S_1 = x_1, \ldots, S_n = x_n) > 0$ if and only if $|x_i - x_{i-1}| = 1$ for $1 \le i \le n$.

The behavior of the random walk depends on the value of the expectation $\mathbb{E}(\varepsilon_1) = p - q$. - Centered case $\mathbb{E}(\varepsilon_1) = 0$ (or equivalently $p = 1/2$) The r.w. is centered and recurrent on $\mathbb Z$ and

$$
\liminf_{n \to +\infty} S_n = \lim_{n \to +\infty} \mathbf{m}_n = -\infty \quad \text{and} \quad \limsup_{n \to +\infty} S_n = +\infty.
$$

- negative drift $\mathbb{E}(\varepsilon_1) < 0$ (or equivalently $p < 1/2$) The r.w. is transient and

$$
\lim_{n \to +\infty} S_n = \lim_{n \to +\infty} \mathbf{m}_n = -\infty.
$$

- Positive drift $\mathbb{E}(\varepsilon_1) > 0$ (or equivalently $p > 1/2$) The r.w. is transient and

$$
\lim_{n \to +\infty} S_n = +\infty \quad \text{and} \quad \liminf_{n \to +\infty} \mathbf{m}_n > -\infty.
$$

2 Decomposition of the trajectories of the random walk $(S_n)_{n\geq 0}$

2.1 On the descending ladder times and process

Let us consider the sequence $(d_k)_{k>0}$ of descending random times associated to the random walk $(S_n)_{n\geq 0}$ and defined by $d_0 = 0$ and, for $k \geq 1$,

$$
d_k := \inf\{n > d_{k-1} \mid S_n < S_{d_{k-1}}\}
$$

with the convention inf $\emptyset = +\infty$ and $d_k = +\infty$ if $d_{k-1} = +\infty$.

The d_k are stopping times with respect to $(S_n)_{n\geq 0}$: the event $(d_k = \ell)$ depends only on the positions S_0, S_1, \ldots, S_ℓ for any $k, \ell \geq 0$. Furthermore,

- if $p \leq 1/2$ then $\mathbb{P}(d_k < +\infty) = 1$ for any $k \geq 0$;

- if $p > 1/2$ then $\mathbb{P}(d_1 < +\infty) < 1$, so that $\mathbb{P}(d_k < +\infty) = (\mathbb{P}(d_1 < +\infty))^k < 1$ for any $k \geq 1$.

The following statement is of major interest:

Proposition 2.1. The sequence $((d_k - d_{k-1})1_{d_{k-1} < +\infty})$ $\sum_{k\geq 1}$ is iid.

Notice at last that, for any $k \geq 0$, it holds $S_{d_k} \mathbf{1}_{d_k \lt +\infty} = -k$ and

$$
\min(S_{\ell} \mid 0 \leq \ell < d_{k+1}) \mathbf{1}_{d_k < +\infty} = -k.
$$

2.2 Decomposition of the trajectories of the random walk $(S_n)_{n\geq 0}$

• By the above, when $p \leq 1/2$, all the stopping times $d_k, k \geq 0$ are P-as finite. Hence the sequence S_0, S_1, S_2, \ldots may be decomposed as

$$
S_0 = 0, S_1, \dots, S_{d_1 - 1}, S_{d_1} = -1, S_{d_1 + 1}, \dots, S_{d_2 - 1}, \dots, S_{d_k} = -k, S_{d_k + 1}, \dots, S_{d_{k+1} - 1}, \dots, S_{d_{k+1} - 1}, \dots, S_{d_k} = -k, S_{d_k + 1}, \dots, S_{d_{k+1} - 1}, \dots, S_{d_k - 1}
$$
\n
$$
= D_1 \tag{2.1}
$$

The random variables D_k are iid and concern the successive descending excursions of $(S_n)_{n\geq 0}$.

• When $p > 1/2$, it holds $\mathbb{P}(d_1 < +\infty) < 1$; consequently $\mathbb{P}(\forall k \geq 1, d_k < +\infty) = 0$. Hence, there exist a random time $\kappa \geq 0$ such that $\mathbb{P}(d_{\kappa} < +\infty, d_{\kappa+1} = +\infty) = 1$ so that the sequence S_0, S_1, S_2, \ldots may be decomposed as

$$
\underbrace{S_0, S_1, \dots, S_{d_1-1}}_{=:D_1}, \quad \dots \dots \quad , \underbrace{S_{d_{\kappa-1}}, \dots, S_{d_{\kappa}-1}}_{=:D_{\kappa-1}}, \underbrace{S_{d_{\kappa}} = -\kappa, S_{d_{\kappa}+1}, S_{d_{\kappa}+2}, \quad \dots \quad (2.2)}
$$

All the $S_{d_{\kappa}+\ell}, \ell \geq 0$, are greater than $-\kappa$. The random variables $\mathcal{D}_1 \mathbf{1}_{d_1 < +\infty}, \mathcal{D}_2 \mathbf{1}_{d_2 < +\infty}, \ldots$ are also iid and the variable \mathcal{D}_{∞} has same distribution as $\mathcal{D}_1 \mathbf{1}_{d_1=+\infty}$.

3 Pitman's theorem in the case $d=1$

3.1 The killed random walk on N and its Doob's transform

It is natural to consider the following operator P^+ given by: for any $\varphi : \mathbb{Z} \to \mathbb{R}^+$ and $x \geq 0$,

$$
P^+\varphi(x) := \mathbb{E}_x(\varphi(S_1), d_1 \ge 1) = \mathbb{E}(\varphi(x+\varepsilon_1), x+\varepsilon_1 \ge 0).
$$

This operator is submarkovian since $P^+ \mathbf{1}(0) = \mathbb{P}(\varepsilon_1 = 1) = p < 1$; nevertheless, by Lemma 4.1, the following function h

$$
h(x) = \begin{cases} x+1 & \text{if } p = 1/2, \\ \gamma^{x+1} - 1 & \text{if } q > p, \\ 1 - \gamma^{x+1} & \text{if } q < p, \end{cases} \quad \text{with } \gamma = q/p,
$$

is positive on N and satisfies $P^+h = h$. This readily implies that the operator P_h^+ h_h^+ defined by

$$
\forall \varphi : \mathbb{N} \to \mathbb{R}^+, \quad P_h^+(\varphi) = \frac{1}{h} P^+(h\varphi)
$$

is markovian on N. It is called the "Doob transform" of the operator P^+ . More precisely, $P_h^+ = (p_h(x, y))_{x, y \ge 0}$ with:

• if $p = 1/2$,

$$
p_h(x,y) = \begin{cases} 1 & \text{for } x = 0, y = 1, \\ \frac{x}{2(x+1)} & \text{for } x \ge 1, y = x - 1, \\ \frac{x+2}{2(x+1)} & \text{for } x \ge 1, y = x + 1, \\ 0 & \text{otherwise,} \end{cases}
$$

• if $p \neq 1/2$, setting $\gamma = q/p$,

$$
p_h(x,y) = \begin{cases} 1 & \text{for } x = 0, y = 1, \\ q \frac{\gamma^x - 1}{\gamma^{x+1} - 1} & \text{for } x \ge 1, y = x - 1, \\ p \frac{\gamma^{x+2} - 1}{\gamma^{x+1} - 1} & \text{for } x \ge 1, y = x + 1, \\ 0 & \text{otherwise,} \end{cases}
$$

Notice that, as conjugation in linear algebra or group theory, it holds

$$
p_h(x_0,...,x_n) := p_h(x_0,x_1)...p_h(x_{n-1},x_n) = \frac{h(x_n)}{h(x_0)}p(x_0,...,x_n).
$$

3.2 On the process $(S_n - 2m_n)_{n \geq 0}$ and the Pitman's theorem

We consider in this section the process $(W_n)_{n\geq 0} = (S_n - 2m_n)_{n\geq 0}$. The equalities $S_{d_k} \mathbf{1}_{d_k \leq +\infty} = -k \mathbb{P}$ -a.s. for any $k \geq 0$ yield

$$
\mathcal{L}_{\mathcal{N}} \left(\mathcal{L}_{\mathcal{N}} \right) = \mathcal{L}_{\mathcal{N}}
$$

$$
(S_{d_k}-2\mathbf{m}_{d_k})\ \mathbf{1}_{d_k<+\infty}=k\qquad \mathbb{P}\text{-a.s.}
$$

The decompositions (2.1) and (2.2) of the trajectories of $(S_n)_{n\geq 0}$ transfer to those of $(W_n)_{n\geq 0}$: • when $p \leq 1/2$, the sequence W_0, W_1, W_2, \ldots may be decomposed as

$$
S_0, S_1, \ldots, S_{d_1-1} = 0, \underbrace{2 + S_{d_1}, 2 + S_{d_1+1}, \ldots, 2 + S_{d_2-1}}_{=:W_2}, \ldots \ldots
$$

\n
$$
\underbrace{2k + S_{d_k}, 2k + S_{d_k+1}, \ldots, 2k + S_{d_{k+1}-1}}_{=:W_k}, \ldots
$$

The r.v. $\mathcal{W}_1, \mathcal{W}_2, \ldots$ are iid. Furthermore, for any finite sequence $\mathbf{x} = (x_0, x_1, x_2, \ldots, x_n)$ in N with $x_0 = x_{n-1} = 0, x_n = 1$ and $|x_i - x_{i-1}| = 1$ for $1 \le i \le n-1$, it holds

$$
\mathbb{P}(\mathcal{W}_1=\mathbf{x})=\mathbb{P}(\mathcal{D}_1=(x_0,\ldots,x_{n-1}=,-1))=p(x_0,\ldots,x_n)\times\gamma
$$

where $\gamma = q/p$.

• When $p > 1/2$, the sequence W_0, W_1, W_2, \ldots may be decomposed as

$$
S_0, S_1, \ldots, S_{d_1-1}, \ldots, \ldots, \underbrace{2(\kappa-1) + S_{d_{\kappa-1}}, \ldots, 2(\kappa-1) + S_{d_{\kappa}-1}}_{=:W_{\kappa-1}},
$$

$$
\underbrace{2\kappa + S_{d_{\kappa}}, 2\kappa + S_{d_{\kappa}+1}, 2\kappa + S_{d_{\kappa}+2}, \ldots}_{=:W_{\infty}}
$$

The random variables $W_1\mathbf{1}_{d_1<+\infty}, W_2\mathbf{1}_{d_2<+\infty}, \ldots$ are also iid and the last variable W_∞ has same distribution as $W_1 \mathbf{1}_{d_1=\infty}$. As previously, for any finite sequence $\mathbf{x} = (x_0, x_1, x_2, \dots, x_n)$ in N with $x_0 = x_{n-1} = 0, x_n = 1$ and $|x_i - x_{i-1}| = 1$ for $1 \le i \le n-1$, it holds

$$
\mathbb{P}(\mathcal{W}_1 \mathbf{1}_{d_1 < +\infty} = \mathbf{x}) = p(x_0, \dots, x_n) \times \gamma
$$

while, for any infinite sequence **x** in N with $x_0 = 0$ and $|x_i - x_{i-1}| = 1$ for $i \ge 1$,

$$
\mathbb{P}(\mathcal{W}_1 \mathbf{1}_{d_1 = +\infty} = \mathbf{x}) = \mathbb{P}(\mathcal{D}_1 \mathbf{1}_{d_1 = +\infty} = \mathbf{x}).
$$

The goal of these pages is to prove the following statement.

Theorem 3.1. The process $(S_n - 2m_n)_{n \geq 0}$ is a Markov chain on N with one step transition probability operator P_h^+ h^+ .

To prove this statement, it suffices to check that, for any finite sequence $\mathbf{x} = (x_0, \ldots, x_n)$ in N such that $x_0 = 0$ and $|x_{\ell} - x_{\ell+1}| = 1$ for $0 \le \ell \le n - 1$, it holds

$$
\mathbb{P}(W_{\ell}=x_{\ell},0\leq \ell\leq n)=\prod_{\ell=0}^{n-1}p_h(x_{\ell},x_{\ell+1})=\frac{h(x_n)}{h(x_0)}p(x_0,\ldots,x_n).
$$

The set $\Lambda := (W_\ell = x_\ell, 0 \leq \ell \leq n)$ may be decomposed as the disjoint union of the events $\Lambda_x, 0 \leq x \leq x_n$, defined by

$$
\Lambda_x := \Lambda \cap \left(\min_{i \geq n} (W_i) = x \right)
$$

so that, we may write $\mathbb{P}(\Lambda) = \sum_{n=1}^{x_n}$ $x=0$ $\mathbb{P}(\Lambda_x) = \sum^{x_n}$ $x=0$ \sum $+\infty$ $_{k=0}$ $\mathbb{P}(\Lambda_x, d_k \leq n < d_{k+1}).$ Furthermore, for any $k \geq 0$, it holds $\min_{i \geq d_k} (W_i) \geq k$; consequently

$$
\left(\min_{i\geq n}(W_i)=x\right)\cap\left(d_k\leq nx,<="" math="">
$$

so that $\mathbb{P}(\Lambda)$ may be decomposed as

$$
\mathbb{P}(\Lambda) = \sum_{x=0}^{x_n} \sum_{k=0}^{x} \mathbb{P}(\Lambda_x, d_k \le n < d_{k+1}).\tag{3.1}
$$

.

3.3 Proof of Pitman's theorem when $p = 1/2$

In this cases, all the $d_k, k \ge 0$, are P-as finite and $\min_{i \ge d_{k+1}} (W_i) = k + 1$. Furthermore

$$
(d_k \le n < d_{k+1}) \Longrightarrow \min_{i \ge n} (W_i) = k.
$$

Hence

$$
\Lambda_x \cap (d_k \le n < d_{k+1}) = \begin{cases} \emptyset & \text{if } k \ne x, \\ \Lambda_x & \text{if } k = x \end{cases}
$$

Consequently, equation (3.1) becomes

$$
\mathbb{P}(\Lambda) = \sum_{x=0}^{x_n} \mathbb{P}(\Lambda_x)
$$

=
$$
\sum_{x=0}^{x_n} \mathbb{P}(W_0 = x_0, ..., W_n = x_n, \min_{i \ge n} (W_i) = x)
$$

=
$$
\sum_{x=0}^{x_n} \gamma^x \times p(x_0, ..., x_n) \underbrace{\mathbb{P}\left(\min_{i \ge n} (W_i) = x\right)}_{=\mathbb{P}(\exists i \ge 1 | x_n + S_i = x - 1) = 1}
$$

=
$$
p(x_0, ..., x_n)(x_n + 1) = \frac{h(x_n)}{h(0)} p(x_0, ..., x_n) = p_h(x_0, ..., x_n).
$$

3.4 Proof of Pitman's theorem when $p < 1/2$

In this cases, all the $d_k, k \ge 0$, are still P-as finite and $\min_{i \ge d_{k+1}} (W_i) = k+1$. As above,

$$
\Lambda_x \cap (d_k \le n < d_{k+1}) = \begin{cases} \emptyset & \text{if } k \ne x, \\ \Lambda_x & \text{if } k = x \end{cases}
$$

and equation (3.1) becomes

$$
\mathbb{P}(\Lambda) = \sum_{x=0}^{x_n} \mathbb{P}(\Lambda_x)
$$

=
$$
\sum_{x=0}^{x_n} \gamma^x p(x_0, \dots, x_n) \underbrace{\mathbb{P}\left(\min_{i \ge n} (W_i) = x\right)}_{=\mathbb{P}(\exists i \ge 1 | x_n + S_i = x-1) = 1}
$$

=
$$
p(x_0, \dots, x_n) \frac{\gamma^{x_n+1} - 1}{\gamma - 1}
$$

=
$$
\frac{h(x_n)}{h(x_0)} p(x_0, \dots, x_n) = p_h(x_0, \dots, x_n).
$$

3.5 Proof of Pitman's theorem when $p > 1/2$

This is the most interesting case since $\mathbb{P}(d_1 = +\infty) > 0$. We start again with equation (3.1)

$$
\mathbb{P}(\Lambda) = \sum_{x=0}^{x_n} \sum_{k=0}^{x} \mathbb{P}(\Lambda_x, d_k \le n < d_{k+1}).
$$

notice that $W_{d_{k+1}-1} \mathbf{1}_{d_k < +\infty} = k$; hence,

$$
0 \le k < x \quad \Longrightarrow \quad \Lambda_x \cap (d_k \le n < d_{k+1}) \ \subset (d_{k+1} = +\infty)
$$

Consequently,

• when $0 \leq k < x$,

$$
\mathbb{P}(\Lambda_x, d_k \le n < d_{k+1}) = \mathbb{P}(\Lambda_x, d_k \le n < d_{k+1} = +\infty)
$$
\n
$$
= p(x_0, \dots, x_n) \; \gamma^k \; \mathbb{P}\left(\min_{i \ge n} (W_i) = x\right).
$$

• when $k = x$,

$$
\mathbb{P}(\Lambda_x, d_k \le n < d_{k+1}) = \mathbb{P}(\Lambda_x, d_x \le n < d_{x+1} = +\infty) \\
\quad + \mathbb{P}(\Lambda_x, d_x \le n < d_{x+1} < +\infty) \\
= p(x_0, \dots, x_n) \, \gamma^x \, \mathbb{P}\left(\min_{i \ge n} (W_i) = x\right) \\
\quad + p(x_0, \dots, x_n) \, \gamma^x \, \mathbb{P}(\exists i \ge 1 \mid x_n + S_i = x - 1).
$$

Consequently,

$$
\mathbb{P}(\Lambda) = p(x_0, \dots, x_n) \sum_{x=0}^{x_n} \left(\sum_{k=0}^x \gamma^k \mathbb{P}\left(\min_{i \ge n} (W_i) = x\right) \right)
$$

+
$$
p(x_0, \dots, x_n) \sum_{x=0}^{x_n} \gamma^x \mathbb{P}(\exists i \ge 1 \mid x_n + S_i = x - 1).
$$
 (3.2)

By lemma 4.2, it holds

$$
\mathbb{P}(\exists i \ge 1 \mid x_n + S_i = x - 1) = \mathbb{P}_{x_n - x + 1}(\tau_0 < +\infty) = \gamma^{x_n - x + 1}
$$

and

$$
\mathbb{P}\left(\min_{i\geq n}(W_i) = x\right) = \mathbb{P}\left((\exists i \geq 1 \mid x_n + S_i = x) \cap (\forall i \geq 1 \mid x_n + S_i \neq x - 1)\right)
$$

$$
= \mathbb{P}\left((\exists i \geq 1 \mid x_n + S_i = x) \setminus (\exists i \geq 1 \mid x_n + S_i = x - 1)\right)
$$

$$
= \mathbb{P}_{x_n - x}(\tau_0 < +\infty) - \mathbb{P}_{x_n - x + 1}(\tau_0 < +\infty)
$$

$$
= (1 - \gamma)\gamma^{x_n - x}.
$$

Finally, equation (3.2) yields

$$
\mathbb{P}(\Lambda) = p(x_0, \dots, x_n) \sum_{k=0}^{x_n} \gamma^k
$$

= $p(x_0, \dots, x_n) \frac{1 - \gamma^{x_n+1}}{1 - \gamma}$
= $p(x_0, \dots, x_n) \frac{h(x_n)}{h(0)} = p_h(x_0, \dots, x_n).$

4 Auxiliary results

4.1 Harmonic functions for the killed random walk on N

We consider the submarkovian transition operator P^+ on N given by: for any $x \in \mathbb{N}$ and any function $\varphi : \mathbb{N} \to \mathbb{R}^+,$

$$
P^+\varphi(x) := \mathbb{E}_x(\varphi(S_1), S_1 \ge 0) = \mathbb{E}_x(\varphi(S_1), d_1 \ge 1).
$$

In other words, $P^+ = (p^+(x,y))_{x,y \in \mathbb{N}}$ with $p^+(x,y) = p(x,y) \mathbf{1}_{\mathbb{N}}(x) \mathbf{1}_{\mathbb{N}}(y)$:

$$
P^{+} = \left(\begin{array}{cccc} 0 & p & 0 & 0 & \dots \\ q & 0 & p & 0 & \dots \\ 0 & q & 0 & p & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{array} \right)
$$

Let us describe the set of P^+ -harmonic functions $\mathcal{H}(P^+)$ on N.

Lemma 4.1. Let $h = (h(x))_{x \geq 0}$ be a P⁺-harmonic function on N. Then, there exists $a \in \mathbb{R}$ such that

- if $p = q = 1/2$ then $h(x) = a(x + 1)$ for any $x \ge 0$;
- if $p \neq q$ then $h(x) = a(1 (q/p)^{x+1})$ for any $x \geq 0$.

Proof. The equality $P^+h = h$ yields $\forall x \geq 1$, $h(x) = qh(1) + ph(x+1)$ and $h(0) = ph(1)$. The corresponding characteristic equation is $pr^2 - r + q = 0 = (r - 1)(pr - q)$. Hence,

- if $p = q = 1/2$ then $h(x) = ax + b$ with $a, b \in \mathbb{R}$. The equality $h(0) = h(1)/2$ yields $b = a$.
- if $p \neq q$ then $h(x) = a + b(q/p)^x$ with $a, b \in \mathbb{R}$. The equality $h(0) = ph(1)$ yields $b = -aq/p$.

П

4.2 On the hitting probability of the origin

Let $\tau_0 : \Omega \to \mathbb{N}$ be the hitting time of the origin defined by $\tau_0 := \inf\{n \geq 0 \mid S_n = 0\}$. The hitting probability of the origin, starting from $x \geq 0$ equals $\mathbb{P}_x(\tau_0 < +\infty)$.

Lemma 4.2. For any $x > 0$, it holds - if $p \leq 1/2$ then $\mathbb{P}_x(\tau_0 \leq +\infty) = 1$; - if $p > 1/2$ then $\mathbb{P}_x(\tau_0 < +\infty) = (q/p)^x$.

The proof is similar to the one of Lemma 4.1 but the boundary condition is different. We consider the Markov chain $(X'_n)_{n\geq 0}$ on N with probability transition $(p'(x, y))_{x,y}$ given by $p'(x, y) = p(x, y)$ when $x \ge 1$ and $p'(0,0) = 1$. The function $g: x \mapsto \mathbb{P}_x(\tau_0 < +\infty)$ is P'-harmonic on N:

$$
\forall x \ge 1
$$
, $g(x) = qg(x-1) + pg(x+1)$ and $g_0 = 1$.

Consequently, there exist $a, b \in \mathbb{R}$ such that $g(x) = ax + b$ when $p = q = 1/2$ while $g(x) =$ $a(q/p)^x + b$ when $p \neq q$. The condition $g_0 = 1$ yields

$$
g(x) = \begin{cases} ax + 1 & \text{if } p = 1/2 \\ a((q/p)^x - 1) + 1 & \text{if } p \neq q. \end{cases}
$$

• $p \leq 1/2$.

The fact that q is bounded yield $q(x) = 1$ (for any $x \ge 0$). • $p > 1/2$. It holds $S_n \to +\infty$ P-as, hence $\min(S_n, n \geq 0) > -\infty$ P-as which yields

$$
\mathbb{P}(\min(S_n) \ge -x) \nearrow 1 \quad \text{as} \quad x \to +\infty.
$$

Consequently $g(x) = \mathbb{P}_x(\tau_0 < +\infty) = \mathbb{P}(x + \min(S_n) \leq 0) \searrow 0$ as $x \to +\infty$. Since $q/p < 1$, we obtain $a = 1$ hence $g(x) = (q/p)^x$ for any $x \ge 0$.

 \Box

References

- [1] Feller W. An introduction to Probability Theory and Its Applications. Vol. I, J. Wiley, (1970).
- [2] Spitzer L. Principles of random walks. D. van nostrand Company (1964).
- [3] Pitman J. W. One dimensional Brownian motion and the 3-dimensional Bessel process. Adv. Appl. Probab. vol. 7, (1975), 511–526.
- [4] MIYAZAKI H. & TANAKA H. A theorem of Pitman type for simple random walks on \mathbb{Z}^d . Tokyo J. Math., vol. 12, no. 1, (1989), 235–240.