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1 Introduction

Pitman’s theorem for a one-dimensional Brownian motion B(t) states that B(t) − 2m(t) is a
Bessel process, were B(0) = 0 and m(t) denotes the minimum of B(s), 0 ≤ s ≤ t. Since the
Brownian motion can be obtained, after a scaling limit, from a coin-tossing random walk (Sn)n≥0
on Z, it is natural to prove a similar statement for this random walk and its extension to higher
dimensional random walks.

Following [4], we prove with elementary arguments that (Sn − 2mn)n≥0, with S0 = 0 and
mn = min(Sk | 0 ≤ k ≤ n), is a Markov chain on N whose transition function p(x, y) can be
computed. This transition probability is expressed as the Doob transform of the transitions
of the simple random walk, obtained using a positive harmonic function of this random walk
confined to N. The Pitman transform therefore proposes a trajectory interpretation of this Doob
transform and can be extended in higher dimensions.

In [4], H. Miyazaki & H. Tanaka extend this result in higher dimension. They claim that the
approach presented here in dimension d = 1 may also be applied to the case d ≥ 2 without giving
any detail and writing “the argument will be quite messy” [4, Introduction]. They employ another
method based on the simple observation that the coordinate processes of a simple random walk
on Zd, d ≥ 2, with continuous time are independent although this is not true for the case of
discrete time. This extension is not presented here.
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1.1 Notations

Let (ε)i≥1 be a sequence of i.i.d. random variables with values in {−1,+1} and Bernoulli
distribution µp = pδ1 + qδ−1 with 0 < p, q < 1 and p+ q = 1.

We set S0 = 0, Sn = ε1 + . . .+ εn and mn = min(S0, . . . , Sn) for any n ≥ 1.
The process (Sn)n≥0 is an irreducible Markov chain on Z with transition matrix P =

(p(x, y))x,y∈Z given by

p(x, y) =


p if y = x+ 1
q if y = x− 1
0 otherwise.

The Markov chain (Sn)n≥0 is defined on the canonical probability space (ZN,P(Z)⊗N, (Px)x∈Z)
where the measure Px is the unique probability measure on P(Z)⊗N satisfying the property: for
any n ≥ 1 and (x1, . . . , xn) ∈ Zn

Px(S1 = x1, . . . , Sn = xn) = p(x, x1) . . . p(xn−1, xn)︸ ︷︷ ︸
=:p(x,x1,...,xn)

.

notice that Px0(S1 = x1, . . . , Sn = xn) > 0 if and only if |xi − xi−1| = 1 for 1 ≤ i ≤ n.

The behavior of the random walk depends on the value of the expectation E(ε1) = p− q.
- Centered case E(ε1) = 0 (or equivalently p = 1/2)
The r.w. is centered and recurrent on Z and

lim inf
n→+∞

Sn = lim
n→+∞

mn = −∞ and lim sup
n→+∞

Sn = +∞.

- negative drift E(ε1) < 0 (or equivalently p < 1/2)
The r.w. is transient and

lim
n→+∞

Sn = lim
n→+∞

mn = −∞.

- Positive drift E(ε1) > 0 (or equivalently p > 1/2)
The r.w. is transient and

lim
n→+∞

Sn = +∞ and lim inf
n→+∞

mn > −∞.

2 Decomposition of the trajectories of the random walk (Sn)n≥0

2.1 On the descending ladder times and process

Let us consider the sequence (dk)k≥0 of descending random times associated to the random
walk (Sn)n≥0 and defined by d0 = 0 and, for k ≥ 1,

dk := inf{n > dk−1 | Sn < Sdk−1
}

with the convention inf ∅ = +∞ and dk = +∞ if dk−1 = +∞.
The dk are stopping times with respect to (Sn)n≥0: the event (dk = `) depends only on the

positions S0, S1, . . . , S` for any k, ` ≥ 0. Furthermore,
- if p ≤ 1/2 then P(dk < +∞) = 1 for any k ≥ 0;
- if p > 1/2 then P(d1 < +∞) < 1, so that P(dk < +∞) = (P(d1 < +∞))k < 1 for any

k ≥ 1.
The following statement is of major interest:
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Proposition 2.1. The sequence
(

(dk − dk−1)1dk−1<+∞

)
k≥1

is iid.

Notice at last that, for any k ≥ 0, it holds Sdk1dk<+∞ = −k and

min(S` | 0 ≤ ` < dk+1)1dk<+∞ = −k.

2.2 Decomposition of the trajectories of the random walk (Sn)n≥0

• By the above, when p ≤ 1/2, all the stopping times dk, k ≥ 0 are P-as finite. Hence the
sequence S0, S1, S2, . . . may be decomposed as

S0 = 0, S1, . . . , Sd1−1︸ ︷︷ ︸
=:D1

, Sd1 = −1, Sd1+1, . . . , Sd2−1︸ ︷︷ ︸
=:D2

, . . . , Sdk = −k, Sdk+1, . . . , Sdk+1−1︸ ︷︷ ︸
=:Dk

, . . .

(2.1)
The random variables Dk are iid and concern the successive descending excursions of (Sn)n≥0.

• When p > 1/2, it holds P(d1 < +∞) < 1; consequently P(∀k ≥ 1, dk < +∞) = 0. Hence,
there exist a random time κ ≥ 0 such that P(dκ < +∞, dκ+1 = +∞) = 1 so that the sequence
S0, S1, S2, . . . may be decomposed as

S0, S1, . . . , Sd1−1︸ ︷︷ ︸
=:D1

, . . . . . . , Sdκ−1 , . . . , Sdκ−1︸ ︷︷ ︸
=:Dκ−1

, Sdκ = −κ, Sdκ+1, Sdκ+2, . . .︸ ︷︷ ︸
=:D∞

(2.2)

All the Sdκ+`, ` ≥ 0, are greater than −κ. The random variables D11d1<+∞,D21d2<+∞, . . . are
also iid and the variable D∞ has same distribution as D11d1=+∞.

3 Pitman’s theorem in the case d = 1

3.1 The killed random walk on N and its Doob’s transform

It is natural to consider the following operator P+ given by: for any ϕ : Z→ R+ and x ≥ 0,

P+ϕ(x) := Ex(ϕ(S1), d1 ≥ 1) = E(ϕ(x+ ε1), x+ ε1 ≥ 0).

This operator is submarkovian since P+1(0) = P(ε1 = 1) = p < 1; nevertheless, by Lemma 4.1,
the following function h

h(x) =


x+ 1 if p = 1/2,
γx+1 − 1 if q > p,
1− γx+1 if q < p,

with γ = q/p,

is positive on N and satisfies P+h = h. This readily implies that the operator P+
h defined by

∀ϕ : N→ R+, P+
h (ϕ) =

1

h
P+(hϕ)

is markovian on N. It is called the “Doob transform” of the operator P+. More precisely,
P+
h = (ph(x, y))x,y≥0 with:
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• if p = 1/2,

ph(x, y) =


1 for x = 0, y = 1,
x

2(x+1) for x ≥ 1, y = x− 1,
x+2

2(x+1) for x ≥ 1, y = x+ 1,

0 otherwise,

• if p 6= 1/2, setting γ = q/p,

ph(x, y) =


1 for x = 0, y = 1,

q γx−1
γx+1−1 for x ≥ 1, y = x− 1,

p γx+2−1
γx+1−1 for x ≥ 1, y = x+ 1,

0 otherwise,

Notice that, as conjugation in linear algebra or group theory, it holds

ph(x0, . . . , xn) := ph(x0, x1) . . . ph(xn−1, xn) =
h(xn)

h(x0)
p(x0, . . . , xn).

3.2 On the process (Sn − 2mn)n≥0 and the Pitman’s theorem

We consider in this section the process (Wn)n≥0 = (Sn − 2mn)n≥0.
The equalities Sdk1dk<+∞ = −k P-a.s. for any k ≥ 0 yield

(Sdk − 2mdk) 1dk<+∞ = k P-a.s.

The decompositions (2.1) and (2.2) of the trajectories of (Sn)n≥0 transfer to those of (Wn)n≥0:
• when p ≤ 1/2, the sequence W0,W1,W2, . . . may be decomposed as

S0, S1, . . . , Sd1−1 = 0︸ ︷︷ ︸
=:W1

, 2 + Sd1 , 2 + Sd1+1, . . . , 2 + Sd2−1︸ ︷︷ ︸
=:W2

, . . . . . .

. . . . . . 2k + Sdk , 2k + Sdk+1, . . . , 2k + Sdk+1−1︸ ︷︷ ︸
=:Wk

, . . .

The r.v. W1,W2, . . . are iid. Furthermore, for any finite sequence x = (x0, x1, x2, . . . , xn) in N
with x0 = xn−1 = 0, xn = 1 and |xi − xi−1| = 1 for 1 ≤ i ≤ n− 1, it holds

P(W1 = x) = P(D1 = (x0, . . . , xn−1 =,−1)) = p(x0, . . . , xn)× γ

where γ = q/p.

• When p > 1/2, the sequence W0,W1,W2, . . . may be decomposed as

S0, S1, . . . , Sd1−1︸ ︷︷ ︸
=:W1

, . . . . . . , 2(κ− 1) + Sdκ−1 , . . . , 2(κ− 1) + Sdκ−1︸ ︷︷ ︸
=:Wκ−1

,

2κ+ Sdκ , 2κ+ Sdκ+1, 2κ+ Sdκ+2, . . .︸ ︷︷ ︸
=:W∞

The random variablesW11d1<+∞,W21d2<+∞, . . . are also iid and the last variableW∞ has same
distribution as W11d1=+∞. As previously, for any finite sequence x = (x0, x1, x2, . . . , xn) in N
with x0 = xn−1 = 0, xn = 1 and |xi − xi−1| = 1 for 1 ≤ i ≤ n− 1, it holds

P(W11d1<+∞ = x) = p(x0, . . . , xn)× γ
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while, for any infinite sequence x in N with x0 = 0 and |xi − xi−1| = 1 for i ≥ 1,

P(W11d1=+∞ = x) = P(D11d1=+∞ = x).

The goal of these pages is to prove the following statement.

Theorem 3.1. The process (Sn − 2mn)n≥0 is a Markov chain on N with one step transition
probability operator P+

h .

To prove this statement, it suffices to check that, for any finite sequence x = (x0, . . . , xn) in
N such that x0 = 0 and |x` − x`+1| = 1 for 0 ≤ ` ≤ n− 1, it holds

P(W` = x`, 0 ≤ ` ≤ n) =

n−1∏
`=0

ph(x`, x`+1) =
h(xn)

h(x0)
p(x0, . . . , xn).

The set Λ := (W` = x`, 0 ≤ ` ≤ n) may be decomposed as the disjoint union of the events
Λx, 0 ≤ x ≤ xn, defined by

Λx := Λ ∩
(

min
i≥n

(Wi) = x

)
so that, we may write P(Λ) =

xn∑
x=0

P(Λx) =

xn∑
x=0

+∞∑
k=0

P(Λx, dk ≤ n < dk+1).

Furthermore, for any k ≥ 0, it holds min
i≥dk

(Wi) ≥ k; consequently(
min
i≥n

(Wi) = x
)
∩ (dk ≤ n < dk+1) = ∅ if k > x,

so that P(Λ) may be decomposed as

P(Λ) =

xn∑
x=0

x∑
k=0

P(Λx, dk ≤ n < dk+1). (3.1)

3.3 Proof of Pitman’s theorem when p = 1/2

In this cases, all the dk, k ≥ 0, are P-as finite and min
i≥dk+1

(Wi) = k + 1. Furthermore

(dk ≤ n < dk+1) =⇒ min
i≥n

(Wi) = k.

Hence

Λx ∩ (dk ≤ n < dk+1) =

{
∅ if k 6= x,
Λx if k = x

.

Consequently, equation (3.1) becomes

P(Λ) =

xn∑
x=0

P(Λx)

=

xn∑
x=0

P(W0 = x0, . . . ,Wn = xn,min
i≥n

(Wi) = x)

=

xn∑
x=0

γx × p(x0, . . . , xn) P
(

min
i≥n

(Wi) = x

)
︸ ︷︷ ︸

=P(∃i≥1|xn+Si=x−1)=1

with γ = 1,

= p(x0, . . . , xn)(xn + 1) =
h(xn)

h(0)
p(x0, . . . , xn) = ph(x0, . . . , xn).
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3.4 Proof of Pitman’s theorem when p < 1/2

In this cases, all the dk, k ≥ 0, are still P-as finite and min
i≥dk+1

(Wi) = k + 1. As above,

Λx ∩ (dk ≤ n < dk+1) =

{
∅ if k 6= x,
Λx if k = x

and equation (3.1) becomes

P(Λ) =

xn∑
x=0

P(Λx)

=

xn∑
x=0

γxp(x0, . . . , xn) P
(

min
i≥n

(Wi) = x

)
︸ ︷︷ ︸

=P(∃i≥1|xn+Si=x−1)=1

= p(x0, . . . , xn)
γxn+1 − 1

γ − 1

=
h(xn)

h(x0)
p(x0, . . . , xn) = ph(x0, . . . , xn).

3.5 Proof of Pitman’s theorem when p > 1/2

This is the most interesting case since P(d1 = +∞) > 0.
We start again with equation (3.1)

P(Λ) =

xn∑
x=0

x∑
k=0

P(Λx, dk ≤ n < dk+1).

notice that Wdk+1−11dk<+∞ = k; hence,

0 ≤ k < x =⇒ Λx ∩ (dk ≤ n < dk+1) ⊂ (dk+1 = +∞)

Consequently,
• when 0 ≤ k < x,

P(Λx, dk ≤ n < dk+1) = P(Λx, dk ≤ n < dk+1 = +∞)

= p(x0, . . . , xn) γk P
(

min
i≥n

(Wi) = x

)
.

• when k = x,

P(Λx, dk ≤ n < dk+1) = P(Λx, dx ≤ n < dx+1 = +∞)

+ P(Λx, dx ≤ n < dx+1 < +∞)

= p(x0, . . . , xn) γx P
(

min
i≥n

(Wi) = x

)
+ p(x0, . . . , xn) γx P(∃i ≥ 1 | xn + Si = x− 1).
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Consequently,

P(Λ) = p(x0, . . . , xn)

xn∑
x=0

(
x∑
k=0

γk P
(

min
i≥n

(Wi) = x

))

+ p(x0, . . . , xn)

xn∑
x=0

γx P(∃i ≥ 1 | xn + Si = x− 1). (3.2)

By lemma 4.2, it holds

P(∃i ≥ 1 | xn + Si = x− 1) = Pxn−x+1(τ0 < +∞) = γxn−x+1

and

P
(

min
i≥n

(Wi) = x

)
= P

(
(∃i ≥ 1 | xn + Si = x) ∩ (∀i ≥ 1 | xn + Si 6= x− 1)

)
= P

(
(∃i ≥ 1 | xn + Si = x) \ (∃i ≥ 1 | xn + Si = x− 1)

)
= Pxn−x(τ0 < +∞)− Pxn−x+1(τ0 < +∞)

= (1− γ)γxn−x.

Finally, equation (3.2) yields

P(Λ) = p(x0, . . . , xn)

xn∑
k=0

γk

= p(x0, . . . , xn)
1− γxn+1

1− γ

= p(x0, . . . , xn)
h(xn)

h(0)
= ph(x0, . . . , xn).

4 Auxiliary results

4.1 Harmonic functions for the killed random walk on N

We consider the submarkovian transition operator P+ on N given by: for any x ∈ N and any
function ϕ : N→ R+,

P+ϕ(x) := Ex(ϕ(S1), S1 ≥ 0) = Ex(ϕ(S1), d1 ≥ 1).

In other words, P+ = (p+(x, y))x,y∈N with p+(x, y) = p(x, y)1N(x)1N(y):

P+ =


0 p 0 0 . . .
q 0 p 0 . . .
0 q 0 p . . .
...

...
...

...
...


Let us describe the set of P+-harmonic functions H(P+) on N.

Lemma 4.1. Let h = (h(x))x≥0 be a P+-harmonic function on N. Then, there exists a ∈ R
such that

- if p = q = 1/2 then h(x) = a(x+ 1) for any x ≥ 0;
- if p 6= q then h(x) = a(1− (q/p)x+1) for any x ≥ 0.
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Proof. The equality P+h = h yields ∀x ≥ 1, h(x) = qh(1) + ph(x+ 1) and h(0) = ph(1).
The corresponding characteristic equation is pr2 − r + q = 0 = (r − 1)(pr − q). Hence,
• if p = q = 1/2 then h(x) = ax+ b with a, b ∈ R. The equality h(0) = h(1)/2 yields b = a.
• if p 6= q then h(x) = a+b(q/p)x with a, b ∈ R. The equality h(0) = ph(1) yields b = −aq/p.

�

4.2 On the hitting probability of the origin

Let τ0 : Ω → N be the hitting time of the origin defined by τ0 := inf{n ≥ 0 | Sn = 0}. The
hitting probability of the origin, starting from x ≥ 0 equals Px(τ0 < +∞).

Lemma 4.2. For any x ≥ 0, it holds
- if p ≤ 1/2 then Px(τ0 < +∞) = 1;
- if p > 1/2 then Px(τ0 < +∞) = (q/p)x.

The proof is similar to the one of Lemma 4.1 but the boundary condition is different. We consider
the Markov chain (X ′n)n≥0 on N with probability transition (p′(x, y))x,y given by p′(x, y) = p(x, y)
when x ≥ 1 and p′(0, 0) = 1. The function g : x 7→ Px(τ0 < +∞) is P ′-harmonic on N:

∀x ≥ 1, g(x) = qg(x− 1) + pg(x+ 1) and g0 = 1.

Consequently, there exist a, b ∈ R such that g(x) = ax + b when p = q = 1/2 while g(x) =
a(q/p)x + b when p 6= q. The condition g0 = 1 yields

g(x) =

{
ax+ 1 if p = 1/2
a((q/p)x − 1) + 1 if p 6= q.

• p ≤ 1/2.
The fact that g is bounded yield g(x) = 1 (for any x ≥ 0).
• p > 1/2.
It holds Sn → +∞ P-as, hence min(Sn, n ≥ 0) > −∞ P-as which yields

P(min(Sn) ≥ −x)↗ 1 as x→ +∞.

Consequently g(x) = Px(τ0 < +∞) = P(x+ min(Sn) ≤ 0)↘ 0 as x→ +∞.
Since q/p < 1, we obtain a = 1 hence g(x) = (q/p)x for any x ≥ 0.

�
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