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Abstract
The Lévy representation theorem establishes that a reflected Brownian motion, which is the

absolute value of a Brownian motion denoted by |B(t)|, is equal in law to a Brownian motion
W (t) minus its infimum before time t, denoted by I(t) := infs6t W (s). More precisely, if L(t) :=
lim‘æ0

1
‘

s t
0 1(0,‘)(B(s))ds represents the local time at 0 of the Brownian motion B, this theorem

provides the equality in law of the following two pairs of processes:

(|B(t)|, L(t); t > 0) (law)= (W (t) ≠ I(t), ≠I(t); t > 0).

Pitman’s representation theorem establishes that a Brownian motion conditioned to stay pos-
itive, which is a three-dimensional Bessel process denoted by Rt, is equal in law to a Brownian
motion W (t) minus twice its infimum I(t). More precisely, if Jt := infs>t Rs is the infimum of the
Bessel process R after time t, this theorem provides the equality in law of the following two pairs
of processes:

(R(t), J(t); t > 0) (law)= (W (t) ≠ 2I(t), ≠I(t); t > 0).

In this presentation, we will start by introducing some fundamental notions of stochastic calculus
such as local times, Bessel processes, and Doob’s h-transformations. These will allow us to present
these two theorems and sketch their proofs.

This presentation o�ers a continuous one-dimensional version of the results presented by Marc
Peigné in his talk on a discrete version of Pitman’s theorem for random walks in Zd.

Contents

1 Brownian Motion and Local Time 2

2 Lévy’s Representation Theorem for Reflected Brownian Motion 5

3 Girsanov’s Transformation and Doob’s h-Transform 6

4 Bessel Process 10

5 Pitman’s Representation Theorem for the 3D Bessel Process 13



Preface

This course is inspired by the references cited in the bibliography, the main one being the book by
Yen and Yor [6]. The aim of this mini-course is to provide a heuristic and pedagogical approach to
Lévy and Pitman theorems, intentionally leaving aside certain technical aspects. For a more rigorous
and comprehensive approach, an interested reader may refer to the bibliography.

Feel free to report any remaining errors or typos by email, as well as to propose any suggestions
aimed at improving this mini-course: sandro.franceschi@telecom-sudparis.eu.

1 Brownian Motion and Local Time

Brownian Motion and Donsker’s Theorem

Definition 1.1 (Standard Brownian Motion). A standard Brownian motion is a real process (Wt)
which is:

i) continuous in its paths (i.e., t ‘æ Wt is continuous);

ii) has independent increments (i.e., for any n > 2 and any 0 6 t1 < · · · < tn, the family (Wt1 , Wt2 ≠
Wt1 , · · · , Wtn ≠ Wtn≠1) is independent, i.e., ’s < t, Wt ≠ Ws is independent of Fs);

iii) has stationary increments (i.e., Wt ≠ Ws has the same law as Wt≠s for all s 6 t);

iv) and for all t > 0, Wt follows a Gaussian distribution N (0, t).

Figure 1: Simulation of a standard Brownian motion trajectory

Approximation via Random Walks It is possible to construct Brownian motion as a limit of
rescaled random walks.

Consider X1, · · · , Xn as a sequence of independent and identically distributed random variables,
following a Bernoulli distribution with parameter 1/2, such that P(Xk = 1) = P(Xk = ≠1) = 1/2.

The symmetric simple random walk is defined as:

Sn = X1 + · · · + Xn

which satisfies E(Sn) = 0 and Var(Sn) = n. To transform this into a continuous function, define
S0 = 0 and for all t > 0,

St := SÂtÊ + (t ≠ ÂtÊ)XÂtÊ+1.

Then, perform a double renormalization:

• in time (with a factor 1/n),

• in space (with a factor 1/
Ô

n),



and define for all t œ [0, 1] the process:

S
(n)
t := SntÔ

n
= 1Ô

n

1
SÂntÊ + (nt ≠ ÂntÊ)XÂntÊ+1

2
.

Theorem 1.2 (Donsker’s Theorem). The sequence of processes (S(n)
t ) converges in law to a standard

Brownian motion (Wt) in C ([0, 1],R).

Figure 2: Illustration of Donsker’s Theorem

Remark 1.3 (Discrete Version of Lévy and Pitman Theorems). To prove the Lévy and Pitman
representation theorems, it is possible to use the discrete version of these theorems via Donsker’s
theorem, which allows approximating Brownian motion with a random walk, and a similar (but more
complex!) theorem that approximates the three-dimensional Bessel process. In this document, we will
detail a possible strategy to prove these theorems without resorting to their discrete version or the
application of limit theorems.

Itô’s Formula

If Xt were a di�erentiable process (which is generally not the case!), we would have the formula
(f ¶ X)Õ = (f Õ ¶ X)X Õ, and by the classical integration formula:

f(Xt) = f(X0) +
⁄ t

0
f

Õ(Xs)X Õ
sds = f(X0) +

⁄ t

0
f

Õ(Xs)dXs.

However, this formula is FALSE in the general case of a di�usion. Due to the quadratic nature of
the martingale part of X, the second-order term in Taylor’s expansion is needed to obtain a correct
formula. This is what Itô’s formula accomplishes!
Theorem 1.4 (Itô’s Formula). Let (X) be an Itô process and f a C2 function. Then:

f(Xt) = f(X0) +
⁄ t

0
f

Õ(Xs)dXs + 1
2

⁄ t

0
f

ÕÕ(Xs)dÈXÍs.

where ÈXÍ is the quadratic variation of X.
For a standard Brownian motion B, this simply becomes:

f(Bt) = f(0) +
⁄ t

0
f

Õ(Bs)dBs + 1
2

⁄ t

0
f

ÕÕ(Bs)ds.

Local Time and Tanaka’s Formula

Let (Bt) be a standard real Brownian motion. We aim to study the time the process spends at a point
a œ R. It is pointless to consider

s t
0 1Bs=ads, as this integral is zero:

E
3⁄ t

0
1Bs=ads

4
=

⁄ t

0
P(Bs = a)ds = 0.

The meaningful concept is the occupation time density. For more details on the results in this section,
refer to [5] and [6].
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Definition 1.5 (Occupation Measure and Local Time). The occupation measure µt is defined as:

µt(A) =
⁄ t

0
1A(Bs)ds,

for any measurable set A µ R. It represents the time spent by the process in A before time t. This
measure admits a density L

•
t with respect to the Lebesgue measure, such that µt(da) = L

a
t da, i.e.,

µt(A) =
⁄

A
L

a
t da.

This density, called the local time, is defined for all a œ R by:

L
a
t = lim

‘æ0
1
‘

⁄ t

0
1{a6Bs<a+‘}ds.

Proposition 1.6 (Occupation Time Formula). Almost surely, the function (t, a) ‘æ L
a
t is continuous

and increasing in t. Moreover, t ‘æ L
a
t increases only when Bt = a, i.e., the support of dtL

a
t coincides

with {t > 0 : Bt = a}. For any measurable positive function f , almost surely:
⁄ t

0
f(Bs)ds =

⁄

R
f(a)La

t da.

This equality transforms a temporal integral into a spatial integral.
The concept of reflection is closely tied to local times. In one dimension, reflection is achieved

simply via the absolute value.
Proposition 1.7 (Tanaka’s Formula). Let Bt be the standard Brownian motion and L

a
t its local time

at a œ R. Then:
|Bt ≠ a| = |B0 ≠ a| +

⁄ t

0
sgn(Bs ≠ a)dBs + L

a
t .

Proof. Apply (formally and incorrectly) Itô’s formula to the absolute value function (which is not C2;
approximation is necessary for rigor). Let f = | · ≠a|. Then f

Õ = sgn(· ≠ a) and f
ÕÕ = 2”a, where ”a is

the Dirac delta at a. If Itô’s theorem were applicable, we would have:

|Bt ≠ a| = |B0 ≠ a| +
⁄ t

0
sgn(Bs ≠ a)dBs + 1

2

⁄ t

0
2”a(Bs)ds.

Noting that, in the distributional sense:

L
a
t =

⁄
”a(u)Lu

t du =
⁄ t

0
”a(Bs)ds,

the desired formula follows.

Remark 1.8 (Local Time and Reflection at 0). The process Wt :=
s t

0 sgn(Bs ≠ a)dBs is a Brownian
motion according to Lévy’s characterization, since

È
⁄ ·

0
sgn(Bs ≠ a)dBsÍt =

⁄ t

0
(sgn(Bs ≠ a))2dÈBÍs =

⁄ t

0
ds = t.

Setting a = 0, we obtain the decomposition:
|Bt| = Wt + L

0
t . (1)

Thus, the local time at 0 can be interpreted as an infinitely strong drift that increases only when the
process hits 0, preventing it from crossing 0 and forcing it to reflect o� this boundary.

We now state the following intuitive result, which will be used in the proof of Pitman’s theorem.
Proposition 1.9 (Time Reversal and Local Time). Let ·1 = inf{t : Lt > 1}. Then:

(B·1≠t; t 6 ·1) (law)= (Bt; t 6 ·1) .

Proof. Since the Brownian bridge is stable under time inversion, the proof follows from the result on
pseudo-Brownian bridges (see Example 4.3.1(b), Section 4.3 in Yen and Yor [6]). Alternatively, one
can directly observe that:

E(F (Bu; u 6 ·1) | ·1 = t) = E(F (Bu; u 6 t) | Bt = 0, Lt = 1).
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2 Lévy’s Representation Theorem for Reflected Brownian Motion

We now state Skorokhod’s Lemma, which is used in the proof of Lévy’s representation theorem. How-
ever, this result also has intrinsic value as it provides insight into the local time and the phenomenon
of reflection.

Lemma 2.1 (Skorokhod’s Lemma). Let w be a continuous function defined on R+ such that w(0) = 0.
There exists a unique pair of functions (x, l) satisfying:

• x = w + l,

• x is nonnegative,

• l is increasing, vanishes at 0, and dls has support {s : x(s) = 0}.

Moreover, l is given by:
l(t) = ≠ inf

s6t
(w(s)).

Proof. It is straightforward to verify that the pair (x, l) = (w ≠ infs6t(w(s)), ≠ infs6t(w(s))) satisfies
the three conditions above. Now that existence is established, let us prove uniqueness by considering
two solutions (x1, l1) and (x2, l2). Using the Stieltjes integral, we obtain:

0 6 (x1(u) ≠ x2(u))2 = (l1(u) ≠ l2(u))2 = 2
⁄ u

0
(x1(v) ≠ x2(v)) (dl1(v) ≠ dl2(v))

= ≠2
⁄ u

0
x1(v)dl2(v) ≠ 2

⁄ u

0
x2(v)dl1(v) 6 0,

which implies x1 = x2 and l1 = l2.

The following identity by Lévy characterizes the law of the local time at 0 for a Brownian motion.

Theorem 2.2 (Lévy’s Representation Theorem). Consider Bt a standard Brownian motion and L
0
t

its local time at 0, as well as Wt a standard Brownian motion and It = infs6t(Ws) its infimum. Then,
the following equality in law holds:

(Wt ≠ It, ≠It; t > 0) (law)= (|Bt|, L
0
t ; t > 0).

Proof. Tanaka’s formula and the properties of local time imply that there exists a standard Brownian
motion Wt such that:

|Bt| = Wt + L
0
t ,

where |Bt| is nonnegative, and L
0
t is increasing and grows only when |Bt| = 0. Skorokhod’s lemma

then implies:
L

0
t = ≠ inf

s6t
(Ws).

Thus, the following almost sure equality holds:

(Wt ≠ It, ≠It; t > 0) = (|Bt|, L
0
t ; t > 0),

leading to the equality in law stated in the theorem.

In fact, we have shown that for a well-chosen W , the equality holds almost surely and not just in
law!

Remark 2.3 (Alternative Formulation of Lévy’s Representation Theorem). Let St = sups6t(Ws).
Then:

(St ≠ Wt, St; t > 0) (law)= (|Bt|, L
0
t ; t > 0).

Proposition 2.4 (Joint Law). The joint law of (|Wt|, L
0
t ) is given by:

P(|Bt| œ dx, L
0
t œ dy) = 2 x + yÔ

2fit3
e

≠ (x+y)2
2t 1x>0,y>0dxdy.
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Proof. Using the reflection principle (Proposition 2.5), one can show that P(St > a, Bt > b) = P(Bt >
2a + b) for all a > 0 and ≠b 6 a. With some variable transformations, the joint law of (|Wt|, L

0
t )

follows via Lévy’s identity.

Proposition 2.5 (Reflection Principle/Désiré André’s Theorem). Let {Wt}t>0 be a Brownian motion,
and let t > 0. Define:

St := sup
06s6t

Ws.

For x > 0 and y 6 x, we have:

P(St > x, Wt 6 y) = P(Wt > 2x ≠ y).

Proof. A diagram is necessary to understand the heuristic. The idea is to use the strong Markov
property. First, we write:

P [St > x, Wt 6 y] = P [Tx 6 t, Wt 6 y] = P [Tx 6 t, Wt≠Tx+Tx ≠ WTx 6 y ≠ WTx ] .

On the one hand, WTx = x, due to the continuity of W . On the other hand, W
x
s = Ws+Tx ≠ WTx is a

Brownian motion independent of FTx (and thus of Tx). We deduce that:

P [St > x, Wt 6 y] = P
#
Tx 6 t, W

x
t≠Tx

6 y ≠ x
$

= P
#
Tx 6 t, W

x
t≠Tx

> x ≠ y
$
,

where the second equality comes from the symmetry of the process W
x given Tx. But:

P
#
Tx 6 t, W

x
t≠Tx

> x ≠ y
$

= P [Tx 6 t, Wt ≠ x > x ≠ y] = P [Wt > 2x ≠ y] ,

where the second equality follows from the inclusion {Wt > 2x ≠ y} µ {Tx 6 t}, which immediately
arises from 2x ≠ y > x.

3 Girsanov’s Transformation and Doob’s h-Transform

Change of Measure and Girsanov’s Theorem

Let (�, A,P) be a probability space. A probability Q on (�, A) is absolutely continuous with respect
to P if and only if:

’A œ A, (P(A) = 0 ∆ Q(A) = 0) .

We note Q π P and we also say that Q is dominated by P. Furthermore, P and Q are said to be
equivalent if each is absolutely continuous with respect to the other.

Theorem 3.1 (Radon Nikodym). Q is absolutely continuous with respect to P if and only if there
exists a nonnegative random variable Z on (�, A) such that:

’A œ A, Q(A) =
⁄

A
Z(Ê)dP(Ê).

Z is called the density of Q with respect to P (or the Radon-Nikodym derivative of Q with respect to
P) and is sometimes denoted by dQ

dP .

If Q is dominated by P, then P and Q are equivalent if and only if P(Z > 0) = 1.
Let P,Q be two probabilities on a measurable space equipped with a filtration (�, F , (Ft)t>0). If

Q π P on FŒ = ‚t>0Ft, we define:
ZŒ := dQ

dP

----
FŒ

.

For any t > 0, Q π P on Ft, and we denote:

Zt := EP [ZŒ | Ft] = dQ
dP

----
Ft

.

(We say that the process (Zt)t>0 is a uniformly integrable martingale under P, closed by ZŒ). In what
follows, we assume that: (Zt)t>0 is a continuous P-martingale almost surely.
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Lemma 3.2 (Bayes’ Formula). If Q ≥ P, then for all t > s and any Ft-measurable random variable
X > 0, we have:

EQ [X | Fs] = EP [XZt | Fs]
Zs

.

Proof. For all t > s > 0 and A œ Fs, we have:

EQ [X1A] = EP [ZŒX1A] = EP [ZtX1A] = EP [EP [ZtX | Fs]1A] = EQ

5EP [ZtX | Fs]
Zs

1A

6
,

which proves the claim.

Recall that M is a martingale if for all t > s, we have Ms = E(Mt | Fs).

Lemma 3.3 (Martingale and Change of Measure). If Q ≥ P, then:

M is a Q-martingale ≈∆ MZ is a P-martingale.

The same statement holds for local martingales.

Proof. The equivalence directly follows from Bayes’ formula.

Doob’s h-Transform

Let X be a di�usion defined by the SDE:

dXt = ‡(Xt)dBt + µ(Xt)dt,

where B is a standard Brownian motion. Consider the probability Q defined by Doob’s h-transform
for the harmonic function h(x) associated with the process X(t), i.e.,

Ex(h(Xt)) = h(x)

(or equivalently, Gh = 1
2‡

2
h

ÕÕ + µh
Õ = 0, where G is the infinitesimal generator of the Markov process

X).
We note that:

Zt = h(Xt)
is a martingale. Indeed, for s < t, using the Markov property, we have:

Ex(Zt | Fs) = EXs(h(Xt)) = h(Xs) = Zs.

We can define a probability such that:

Q(X(t) œ S) = E
3

h(X(t))
h(X(0))1X(t)œS

4

for a set S µ R2.
Under Q, the process Z(t) is a Markov process with the transition kernel:

ÂPt(x0, x) = h(x)
h(x0)Pt(x0, x),

where Pt is the transition kernel of X(t) under P.
We now state the Girsanov theorem adapted to our context.

Theorem 3.4 (Girsanov’s Theorem). Let Lt be the stochastic logarithm of Zt = h(Xt), defined by:

dLt = dZt

Zt
.

Then:
ÂBt = Bt ≠ ÈB, LÍt

is a Brownian motion under Q.
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Proof. We aim to show that Zt
ÂBt is a P-martingale, which implies that ÂBt is a Q-martingale by

Lemma 3.3.
First, note that ZtdÈL, BÍt = dÈZ, BÍt = dÈZ, ÂBÍt. Using the stochastic integration by parts

formula, we obtain:

d(Zt
ÂBt) = ÂBtdZt + Ztd ÂBt + dÈZt,

ÂBtÍ = ÂBtdZt + ZtdBt ≠ ZtdÈB, LÍt + dÈZ, ÂBÍt,

where the last term equals 0. Hence, this is a P-martingale. Therefore, ÂXt is a Q-martingale, and
since its quadratic variation is È ÂXtÍ = t, we deduce by Lévy’s characterization theorem that ÂXt is a
Q-Brownian motion.

The following proposition states that under Q, the process X(t) is conditioned (in the sense of
Doob’s h-transform) to drift in a new direction.

Proposition 3.5 (Doob’s h-Transform of a Di�usion). Under Q, the process X remains a di�usion
with the same di�usion coe�cient ‡ and a new drift given by:

µ + ‡
2Ò log h.

Under the new measure Q, the process (Xt) satisfies the SDE:

dXt = ‡(Xt)d ÂBt + µ(Xt)dt + ‡
2(Xt)

h
Õ(Xt)

h(Xt)
dt,

where ÂBt is a Brownian motion under Q.
Proof. This is a classical result [5, VIII (3.9), p. 358]. The proof heavily relies on Girsanov’s theorem.

To see this, let Lt be the stochastic logarithm of Zt = h(Xt), defined by:

dLt = dZt

Zt
.

Using Girsanov’s theorem:
ÂBt = Bt ≠ ÈB, LÍt

is a Brownian motion under Q. By Itô’s formula:

dZt = d(h(Xt)) = h
Õ(Xt)dXt + 1

2h
ÕÕ(Xt)dÈXÍt,

and thus dÈB, ZÍt = h
Õ(Xt)dÈB, XÍt = h

Õ(Xt)‡2dt, giving:

dÈB, LÍt = h
Õ(Xt)

h(Xt)
‡

2dt.

Scale Function

We introduce the concept of the scale function for a di�usion. Let ·x denote the hitting time of level
x for a process X:

·x := inf{t > 0 | Xt = x}.

For x œ [a, b] (with a < b), the scale probability is defined as:

sab(x) := Px (·b < ·a) .

In general, it can be shown [5, (3.2) VII §3, p. 301] that there exists a strictly monotone, continuous
function h, called the scale function of the di�usion X, such that:

’x œ [a, b], sab(x) := Px (·b < ·a) = h(x) ≠ h(a)
h(b) ≠ h(a) .

A scale function is defined up to additive and multiplicative constants. If h is harmonic for the di�usion
X, then h is a scale function. Below, we calculate the scale functions for Brownian motion and the
Bessel process.

8



Lemma 3.6 (Scale Function for Brownian Motion). The scale function for Brownian motion is given
by S(x) = x, and we say that Brownian motion is in natural scale.

Proof. Let (Bt)t>0 be a real Brownian motion, and let a < b with x œ [a, b]. Define the stopping time:

· := inf{t > 0 | Bt = a or Bt = b}.

Since Brownian motion is a martingale, we have by Doob’s stopping theorem:

Ex [B· ] = Ex [B0] = x.

Additionally, we compute:

Ex [B· ] = Ex [B·1·b<·a ] + Ex [B·1·b>·a ]
= bEx [1·b<·a ] + aEx [1·b>·a ]
= bPx (·b < ·a) + a (1 ≠ Px (·b < ·a))
= (b ≠ a)Px (·b < ·a) + a.

Thus, we obtain:
sab(x) = Px (·b < ·a) = x ≠ a

b ≠ a
.

Lemma 3.7 (Scale Function for a 3D Bessel Process). The scale function for a three-dimensional
Bessel process is given by S(x) = ≠ 1

x .

Proof. The proof is similar.

Di�usion Conditioned to Exit on One Side in (0, L)

For a di�usion X and a harmonic scale function h, recall that:

Px0(·0 > ·L) = h(x0) ≠ h(0)
h(L) ≠ h(0) .

The new measure Q, conditioning the di�usion to reach L before 0 starting from x0, is defined as:

Q(·) = P(· | ·0 > ·L).

It is given by the Radon-Nikodym density:

dQ
dP

----
FŒ

= 1·0>·L

P(·0 > ·L) = h(X·L··0) ≠ h(0)
h(x0) ≠ h(0) ,

where we use the fact that:

h(X·L··0) = h(L)1·0>·L + h(0)(1 ≠ 1·0>·L).

We can normalize the harmonic scale function to Âh(x) = h(x)≠h(0)
h(x0)≠h(0) , so:

dQ
dP

----
Ft

= E
1

Âh(X·L··0)
--- Ft

2
= Âh(Xt··L··0).

Here, the density Âh(Xt··L··0) is a martingale under P starting from 1.
By Proposition 3.5 on the properties of an h-transform, under the new measure Q, the process

(Xt) satisfies the following SDE:

dXt = ‡(Xt)d ÂBt + µ(Xt)dt + ‡
2(Xt)

ÂhÕ(Xt)
Âh(Xt)

dt, t œ [0, ·L],

where ÂBt is a Brownian motion under Q.
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4 Bessel Process

Definition 4.1 (Three-Dimensional Bessel Process). The following three definitions are equivalent:

1. Let (Bt, t > 0) be a Brownian motion in R3. The process (ÎBtÎ, t > 0) is a three-dimensional
Bessel process.

2. Let (Bt, t > 0) be a Brownian motion in R. The solution to the stochastic di�erential equation
dXt = dBt + dt

Xt
is a three-dimensional Bessel process.

3. Let (Bt, t > 0) be a real Brownian motion starting from x0 œ R+ under the probability P. Let
·0 = inf{t > 0 : Bt = 0}. Define the probability:

dQ
dP

----
Ft

= Xt··0

x0
.

Under the probability Q, the process B is a three-dimensional Bessel process starting from x0.
This is the h-process of Brownian motion killed at 0 for h(x) = x. It is also known as Brownian
motion conditioned to remain positive in the sense of Doob’s h-transform.

Proof. 1 … 2: This result can be found in Proposition 3.3, page 252 of Revuz and Yor [5]. We detail
the proof here.

Let (Rt) be a three-dimensional Bessel process defined as Rt = ÎBtÎ, where Bt is a Brownian
motion in R3. Using Itô’s lemma:

Rt =
Ò

(B1
t )2 + (B2

t )2 + (B3
t )2.

Applying Itô’s formula to f(x) =
Ò

x
2
1 + x

2
2 + x

2
3, we have:

dRt = Òf(Bt) · dBt + 1
2�f(Bt) dt.

Computing the terms:
Òf(x) = 1

ÎxÎ(x1, x2, x3), �f(x) = 2
ÎxÎ .

Substituting, we obtain the following SDE for Rt:

dRt = dWt + 1
Rt

dt,

where Wt is a Brownian motion. By the local stochastic Cauchy-Lipschitz theorem, the uniqueness in
law of the solution to such an SDE can be established.

Proof. 2 … 3: Let (Xt)t>0 be a Brownian motion starting at x0 œ (0, L). We aim to condition Xt to
reach L before 0, analyze the SDE satisfied by this process, and then let L æ Œ.

Recall that:
Px0(·0 > ·L) = h(x0) ≠ h(0)

h(L) ≠ h(0) = x0
L

,

where the harmonic function is h(x) = x.
The new measure Q, conditioning the Brownian motion to reach L before 0 starting from x0, is:

Q(·) = P(· | ·0 > ·L).

It is given by the Radon-Nikodym density:

dQ
dP

----
FŒ

= 1·0>·L

P(·0 > ·L) = X·L··0

x0
.
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Thus:
dQ
dP

----
Ft

= E
3

X·L··0

x0

---- Ft

4
= Xt··L··0

x0
.

By Proposition 3.5 on the properties of an h-transform, under the new measure Q, the process
(Xt) satisfies the following SDE:

dXt = d ÂXt + h
Õ(Xt)

h(Xt)
dt = d ÂXt + 1

Xt
dt, t œ [0, ·L],

where ÂXt is a Brownian motion under Q. The drift 1
Xt

acts as a repulsive force, preventing the process
from reaching 0.

When L æ Œ, the time ·L tends to infinity, and the process becomes a Brownian motion on R+
conditioned to never reach 0. This limiting process is the three-dimensional Bessel process, which
satisfies the SDE:

dXt = d ÂXt + 1
Xt

dt, t > 0,

where ÂXt is a Brownian motion under the probability Q defined by:

dQ
dP

----
Ft

= Xt··0

x0
.

Remark 4.2 (Recurrence and Singularity of Q). Under P, Brownian motion almost surely hits 0:

P(T0 < Œ) = 1.

However, under Q, the process is defined to avoid 0 with probability 1:

Q(T0 < Œ) = 0.

Thus, the measure Q is said to be singular (or foreign) with respect to P.

Remark 4.3 (Alternative Proof of 2 … 3). See the article by Pinsky [] on di�usions conditioned to
remain within a given domain. The summary below is from [1].

We aim to illustrate the method used by Pinsky to study a Brownian motion B on Rd conditioned
to remain positive, i.e., in the domain (0, Œ).

Let ·0 = inf{t > 0 | Xt = 0}. Consider a Brownian motion starting at x > 0, (B,Px), which
satisfies the stochastic di�erential equation (SDE):

For a fixed time T > 0, define the measure:

QT
x (·) = Px(· | ·D > T ),

which corresponds to the process conditioned to remain positive up to time T . Let the function:

g
T (x) = Px(·D > T ), x œ D.

Moreover:
lim

T æŒ

Òg
T (x)

gT (x) = ÒÏ0(x)
Ï0(x) ,

uniformly over compact subsets of D, where Ï0 is the eigenfunction of the generator L with Dirichlet
boundary conditions, associated with the smallest eigenvalue ⁄0. It is assumed that Ï0 > 0 in D and
Ï0 = 0 on the boundary ˆD.

The process defined by:

M
T
t = g

T ≠t(Xt··D )
gT (X0) ,
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is a martingale under Px, and for any bounded, Ft-measurable random variable H:

EQT
x

[H] = Ex[HM
T
t ].

Furthermore:
E[MT

t | Fs] = M
T
s , for t > s > 0.

Under the measure QT
x , the process X never leaves the domain D. According to Doob’s h-transform,

the process X under QT
x follows an Itô di�usion with di�usion matrix ‡|D and drift:

b̨
T (x) = b(x) + Òg

T (x)
gT (x) , x œ D.

As T æ Œ, and under certain technical assumptions on the behavior of g
T , the process (X,QT

x )
converges in law to a weak solution (X,Qx) of the SDE with drift:

Âb(x) = lim
T æŒ

b̨
T (x) = b(x) + (‡‡

T )(x)ÒÏ0(x)
Ï0(x) , x œ D.

The law (X,Qx) can be interpreted as that of the original process conditioned never to leave D.

Proposition 4.4. If Rt is a three-dimensional Bessel process, then R
≠1
t is a local martingale.

Proof. The result and its proof can be found in Proposition 3.3, page 252 of the book by Revuz and
Yor [5]. Let f(Rt) = 1

Rt
. Applying Itô’s formula:

df(Rt) = f
Õ(Rt)dRt + 1

2f
ÕÕ(Rt)(dRt)2

,

with
f

Õ(x) = ≠ 1
x2 and f

ÕÕ(x) = 2
x3 .

Substituting the SDE for Rt, dRt = dWt + dt
Rt

, and (dRt)2 = dt, we get:

df(Rt) = ≠ 1
R

2
t

3
dWt + dt

Rt

4
+ 1

R
3
t
dt.

Simplifying:
df(Rt) = ≠dWt

R
2
t

.

Thus, the drift term vanishes, and f(Rt) = 1
Rt

is a local martingale.

Proposition 4.5 (Transition Density of a Three-Dimensional Bessel Process). The transition density
of the three-dimensional Bessel process is given by:

pt(a, b) = (a/t)(b/a)3/2
I1/2(ab/t) exp

1
≠

1
a

2 + b
2
2

/2t

2
for a, b > 0,

where I1/2 is the modified Bessel function of the first kind of index 1/2, and:

pt(0, b) = �(3/2)21/2
t
≠3/2

b
2 exp

1
≠b

2
/2t

2
.

Proof. See Williams’ book, p. 748, or Revuz and Yor, p. 251 [5].
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5 Pitman’s Representation Theorem for the 3D Bessel Process

Proposition 5.1 (Williams’ Time Reversal). Let B be a Brownian motion starting at 0, and let R

be a 3D Bessel process. Define “a = sup{t > 0 : Rt = a}. Then:

(Ru, u 6 “a) (d)= (a ≠ BTa≠u, u 6 Ta) .

Proof. A key ingredient of this proof is the characterization 3 of Definition 4.1, which connects the
Bessel process to Brownian motion via a Doob h-transform. The proof uses Nagasawa’s theorem [2,
Thm 3.3]. For details, see Exercise 3.3 of the book by Mallein and Yor [2], which corrects Corollary
3.4. This result is also stated and proven in Theorem (4.5) and Corollary (4.6), pages 315–317, of the
book by Revuz and Yor [5]. Additionally, see Theorem 1.6.1 of the book by Yen and Yor [6].

The previous proposition is a key element in the proof of Pitman’s theorem.

Theorem 5.2 (Pitman’s Representation Theorem). Let Wt be a standard Brownian motion, and
It = infs6t Ws. Let (Rt)t>0 be a 3D Bessel process, and let Jt = infs>t Rs denote its future infimum.
Then:

(Wt ≠ 2It, ≠It)t>0
(law)= (Rt, Jt)t>0 .

Proof. There are multiple proofs of Pitman’s theorem. For example, one can refer to the book by
Williams (1974) (Thm 3.4, page 751), which uses transition probabilities. Another reference is the
classic book by Revuz and Yor [5, Thm 3.5, page 253]. Below, we detail the proof given in Yen and
Yor’s book [6, Thm 3.1.1, page 33].

Levy’s representation theorem implies that the following two statements are equivalent:

(Wt ≠ 2It; t > 0) (law)= (Rt; t > 0) ,

and:
(|Bt| + Lt; t > 0) (law)= (Rt; t > 0) .

By a scaling argument, it su�ces to show that:

(|Bt| + Lt; t 6 ·1) (law)=
1
Rt; t 6 “

1
2

, (2)

where ·1 = inf{t : Lt > 1} = sup{t : |Bt| + Lt = 1}, and “
1 = sup{t : Rt = 1}.

By Proposition 1.9, we have:

(B·1≠t; t 6 ·1) (law)= (Bt; t 6 ·1) ,

which also holds jointly with:

(1 ≠ L·1≠t; t 6 ·1) (law)= (Lt; t 6 ·1) .

Thus, (2) is equivalent to:

(|B·1≠t| + (1 ≠ L·1≠t) ; t 6 ·1) (law)=
1
Rt; t 6 “

1
2

.

By Levy’s representation theorem 2.2, this is equivalent to:

(1 ≠ BT1≠t; t 6 T1) (law)=
1
Rt; t 6 “

1
2

,

which follows from Williams’ time reversal (Proposition 5.1).
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Remark 5.3 (Alternative Formulation of Pitman’s Theorem). Let St = sups6t(Ws). Then:

(2St ≠ Wt, St; t > 0) (law)= (Rt, Jt; t > 0) .

Corollary 5.4 (Uniform Distribution Conditional on a Bessel Process). Let Rt = Wt ≠ 2It, Rt =
‡{Rs; s 6 t}, and T be an Rt-stopping time. Then, conditionally on RT , the random variable ≠It

(and consequently, Wt ≠ It) is uniformly distributed over [0, RT ]. Specifically, for 0 < y < RT :

P(≠It 6 y | RT ) = P(Wt ≠ It 6 y | RT ) = y

RT
.

Proof. Using Pitman’s theorem, the statement of the corollary is equivalent to: If (Ra
s ; s > 0) is a

BESa(3) process, then infs>0 R
(a)
s is uniformly distributed over [0, a].

From Proposition 4.4, we know that 1/Rt is a local martingale, and it converges to 0 as t æ Œ
(since a 3D Bessel process diverges to infinity). Thus, for a > y, by Doob’s stopping theorem:

1
a

= Ea

A
1

RTy

B

= 1
y
P(Ty < Œ) + 0 · P(Ty = Œ) = 1

y
P(inf R 6 y),

so:
P(inf R 6 y) = y

a
.

Remark 5.5. The process It is not a Markov process. We have seen that for a = 0, 1, 2, the process
Wt ≠ aIt is a Markov process. These are the only values of a for which this property holds.

Remark 5.6 (Pitman Transformations). Pitman’s transformation is often defined as:

Pf(t) = f(t) ≠ 2 inf
06s6t

f(s),

and sometimes as:
ÂPf(t) = 2 sup

06s6t
f(s) ≠ f(t).

Note that P and ÂP are not the same transformations!
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